Estudo de mitigação de transitórios de chaveamento de capacitores

Os transitórios eletromagnéticos no sistema elétrico de um terminal integrador portuário motivou o estudo aqui apresentado, em que se realizaram 12 simulações computacionais considerando três alternativas de solução para a redução das perturbações, envolvendo reatores e resistores em série com os bancos de capacitores e chave seccionadora a vácuo com sistema de fechamento na passagem pelo zero de tensão. Veja os resultados.

Glássio Costa de Miranda, da Universidade Federal de Minas Gerais, e Henrique Fantoni Primo, da SM&A Sistemas Elétricos

evido à necessidade da correção do fator de potência na entrada do sistema elétrico analisado neste trabalho, conforme o Prodist - Procedimentos de Distribuição da Aneel - Agência Nacional de Energia Elétrica, e a Resolução Aneel nº 414, de 09 de setembro de 2010 (que estabelece as condições gerais de fornecimento de energia elétrica), fez-se necessária a inclusão de um montante de reativos da

ordem de 4,4 Mvar em 13,8 kV. Essa potência reativa foi dividida em quatro estágios de 1,1 Mvar cada, agrupados dois a dois nas barras A e C mostradas na figura 1, e chaveados de acordo com a operação das cargas da planta industrial. Neste trabalho são analisadas três alternativas para a mitigação dos transitórios (denominados de oscilatórios pela norma IEEE Std.1159 (2009)

Tensão trifásica	13,8 kVA		
Potência aparente (S)	6115,87 kVA		
Potência ativa (P)	5016,51 kW		
Potência reativa (Q)	3498,36 kvar		
Fator de potência (fp)	0,82i		
Corrente nominal (In)	255,76 A		

Tab. II – Resultados do fluxo de harmônicos

Barra	Tensão	DHTv (%)		
	(kV)	Com BC	Com FH	
GIS	138	0,7	0,1	
I	13,8	12,2	1,1	
II	13,8	12,2	1,1	
А	13,8	12,7	1,1	
В	13,8	12,6	1,3	
С	13,8	12,6	1,3	

[1]) causados pelo chaveamento desses bancos. Tais transitórios duram em torno 150 a 200 ms e podem provocar desligamentos indevidos de cargas sensíveis (inversores de frequência e equipamentos eletrônicos) e queima de

reatores e bancos

de capacitores e outros elementos do sistema elétrico.

Modelamento do sistema

Modelou-se o sistema elétrico do terminal integrador portuário no programa *ATPDraw*, considerando uma fonte de tensão trifásica a partir do modelo *AC source* (1&3), com 13,8 kV_{RMS} entre fases e uma corrente de curto-circuito trifásica igual 5,2 kA, calculada conforme a norma IEC 60909 [2].

As cargas alimentadas na barra A foram modeladas como uma carga equivalente a partir do modelo *RLC 3-ph*, de acordo com os valores apresentados na tabela I.

Utilizaram-se dois estágios com conexão duplo-estrela isolada para o modelamento dos bancos de capacitores BC-01 e BC-02, sendo duas unidades capacitivas de 183,33 kvar em 13,8 kV por fase, totalizando 1,1 Mvar por estágio. As unidades foram modeladas como elementos lineares a partir do modelo *Capacitor*.

O modelo *RLC 3-ph* foi utilizado para a representação dos cabos C-01, C-02 e C-03 da figura 2, considerando-se os parâmetros elétricos obtidos de catálogo de cabo de média

Transformador Geafol

50 anos de qualidade, confiabilidade e segurança

Aliar eficiência energética à segurança de pessoas e não agressão ao meio ambiente é o desafio básico de todo projeto de distribuição de

O transformador de distribuição a seco Geafol oferece confiabilidade, versatilidade, segurança, sendo adequado a qualquer tipo de instalação, de shopping centers a projetos on e off-shore, passando por projetos de geração renováveis, como eólicos e fotovoltaicos.

A qualidade do Geafol é comprovada por uma história de 50 anos e mais de 120.000 transformadores produzidos mundialmente.

siemens.com/geafol

INSTALAÇÕES INDUSTRIAIS

os valores das distorções harmôni-

cas de tensão (DHTv) calculados,

considerando apenas a inclusão dos

bancos BC-01, BC-02, BC-03 e BC-

04, estão acima do limite de 5% re-

comendados pela norma IEEE Std.

lores dos resistores (R-01, R-02,

R-03 e R-04) e indutores (L-01, L-02, L-03 e L-03) para se obterem filtros

harmônicos (FH-01, FH-2, FH-03 e

FH-04) dessintonizados de 3,8ª or-

dem harmônica e com fator de quali-

dade igual a 40, reduzindo assim os

Dessa forma, definiram-se os va-

519 (2014) [3].

tensão e as seguintes características: modelo Eprotenax (Prysmian), um cabo monopolar por fase, seção 50 mm², classe 15 kV e comprimentos de 15 m (C-01) e 5 m (C-02 e C-03).

Para a mitigação dos transitórios eletromagnéticos gerados durante o chaveamento dos bancos de capacitores BC-01 e BC-02, analisaram-se três alternativas, descritas a seguir.

Alternativa 1: Inclusão de resistores (R-01 e R-02) e reatores (L-01 e L-02) em série com os bancos

Conforme apresenta a tabela II,

níveis de DHTv. Tais componentes Tab. III – Simulações realizadas R-01, R-02, CV-01 CV-02 Alternativa ZVC Simulação L-01 e L-02 1 Fechamento Aberta Sem Sem _ 2 Fechada Fechamento Sem Sem (back-to-back) 3 Fechamento Aberta 1 Com Sem 4 Fechada Fechamento 1 Com Sem (back-to-back) Fechamento 5 Aberta 2 Sem Com 6 Fechada Fechamento 2 Sem Com (back-to-back) Fechamento Com Com 7 Aberta 3 8 Com Com Fechada Fechamento 3 (back-to-back) 9 Abertura Aberta Sem Sem 10 Fechada Abertura Sem Sem _ 11 Abertura Aberta Com Sem 1 12 Fechada Abertura 1 Com Sem

foram modelados como elementos lineares a partir dos modelos *Resistor* e *Indutor*.

Alternativa 2 – Utilização de chave seccionadora tripolar a vácuo em cada estágio, com sistema de monitoramento Zero Voltage Closing (ZVC)

Esse sistema é capaz de realizar a manobra individual de cada fase no instante em que a tensão passa por zero, no momento seguinte ao comando de fechamento. Modelaram-se as chaves a vácuo CV-01 e CV-02 como monopolares, a partir do modelo *Switch time_controlled*;

Alternativa 3 – Inclusão de resistores (R-01 e R02) e reatores (L-01 e L-02) em série com os bancos e utilização de uma chave seccionadora tripolar a vácuo em cada estágio com monitoramento Zero Voltage Closing (ZVC)

Como é evidente, a alternativa 3 é a junção das alternativas 1 e 2.

A figura 2 mostra o circuito equivalente utilizado no *ATPDraw* para as simulações de manobras considerando apenas os bancos de capacitores e também as simulações adotando a alternativa 2 (chave com ZVC).

Já a figura 3 apresenta o circuito equivalente utilizado no *ATPDraw* para as simulações considerando a adoção das alternativas 1 (reatores e resistores) e 3 (reatores, resistores e chave com ZVC).

Simulações e análises

De forma a comprovar a eficácia dos métodos descritos acima, e também definir o mais indicado entre eles para o sistema elétrico analisado, realizaram-se 12 simulações, sendo oito manobras de fechamento (energização) e quatro de abertura das chaves CV-01 e CV02. As características dessas simulações são descritas na tabela III, e seus resultados resumidos na tabela IV.

INSTALAÇÕES INDUSTRIAIS

extremamente elevada, situando-se acima deste valor.

Com adoção da alternativa 1 (simulações 3 e 4), pode-se observar, na figura 6, que a inclusão dos reatores e resistores em série com os bancos e capacitores reduziu as sobretensões na barra A para valores em torno de 105% da Vn. Já a sobretensão máxima obtidas nos bancos de capacitores foi de 185% da Vn.

Já com a alternativa 2, utilização das chaves a vácuo com ZVC (simulações 5 e 6), as sobretensões máximas na barra A e nos bancos de capacitores foram de 132% Vn, valores levemente acima do recomendado pelos fabricantes de equipamentos sensíveis.

Nas simulações 7 e 8, observouse que, com a inclusão dos reatores e resistores em série com os bancos de capacitores e a utilização das chaves a vácuo com ZVC (alternativa 3), as tensões na barra A ficaram próximas à nominal e a sobretensão máxima nos bancos de capacitores foi de 141% Vn.

Nesta mesma tabela IV se observa que as manobras de abertura das chaves CV-01 e CV-02 (simulações 9 e 10) não provocam sobretensões significativas na barra A, porém, nos bancos de capacitores, o valor máximo obtido foi de 146% Vn. O

Conforme se observa nesta tabela IV e na figura 4, a sobretensão máxima na barra A durante a energização do BC-01, sem mitigação dos transitórios eletromagnéticos (simulação 1), chega a 186% da tensão nominal (Vn). Este valor está bem acima do recomendado pelos fabricantes de inversores de frequência e equipamentos eletrônicos (Vmax < 130%, para transitórios) [4]. Apesar de as sobretensões máximas obtidas no banco de capacitores serem da ordem de 188% de Vn, pode-se verificar na figura 5 que o tempo é da ordem de milissegundos. Conforme a norma NBR 5282 (1998) [5], a suportabilidade dos capacitores neste caso é

Tab. IV – Sobretensões e sobrecorrentes transitórias máximas obtidas nas simulações								
Simulação	Sobretensões (% Vn)		Sobrecorrentes (x In)					
	Barra A	BC-01	BC-02	Barra A	BC-01	BC-02		
1	186	188	-	2,53	10,21	-		
2	139	148	142	2,08	225,58	225,79		
3	105	185	-	1,5	4,47	-		
4	105	174	173	1,41	3,25	4,43		
5	132	132	-	1,59	4,75	-		
6	116	117	118	1,36	91,64	92,23		
7	101	139	-	1,18	2,66	-		
8	101	136	141	1,18	2,34	2,45		
9	102	146	-	-	-	-		
10	100	102	146	-	-	-		
11	101	155	_	_	_	_		
12	102	105	157	-	-	-		

INSTALAÇÕES INDUSTRIAIS

mesmo se pode afirmar das tensões na barra A em relação às simulações 11 e 12, que contemplam a adoção da alternativa 1 – a sobretensão máxima nos bancos de capacitores foi de 157% Vn (figura 7).

Em relação às sobrecorrentes transitórias, como era esperado, pôde-se observar nos resultados (tabela IV e figura 8) que o valor máximo foi verificado durante a energização do BC-02, sem mitigação dos transitórios eletromagnéticos e com o BC-01 ligado (simulação 2), chegando a 225,79 vezes a corrente nominal (In) dos bancos de capacitores. Este valor está bem acima do recomendado, de 100 x In, pela NBR 5282 [5]. Essas correntes extremamente elevadas correspondem a uma troca de energia entre os bancos BC-01 e BC-02, pouco influindo a contribuição do sistema. Dernomina-se de back-to-back este tipo de energização de bancos de capacitores em paralelo.

Com a inclusão dos reatores e resistores em série com os bancos (alternativa 1), pode-se observar na figura 9 que as sobrecorrentes máximas de pico obtidas na simulação 4 diminuíram para valores inferiores a 5 x In.

Conforme se verifica na figura 10, as sobrecorrentes máximas obtidas na simulação 6, considerando a utilização das chaves a vácuo com ZVC (alternativa 2), foram reduzidas para 92,23 x In, valores levemente abaixo do recomendado pela NBR 5282 [3].

Na simulação 8, observa-se que com a inclusão dos reatores e resistores em série com os bancos e capacitores e a utilização das chaves a vácuo com ZVC (alternativa 3), as sobrecorrentes máximas verifidas foram em torno de 2,45 x In.

Conforme mostram os resultados das simulações, das três alternativas analisadas, do ponto de vista estritamente técnico, a melhor para a mitigação dos transitórios eletromagnéticos, de forma a evitar desligamentos indevidos de cargas sensíveis (inversores de frequência e equipamentos eletrônicos) e a quei-

INSTALAÇÕES INDUSTRIAIS

ma de reatores, bancos de capacitores e outros elementos, é a alternativa 3, ou seja, a inclusão de reatores e resistores em série, em conjunto com chaves a vácuo com sistema ZVC (simulação 8). Essa solução, no entanto, tem custo elevado, pois uma chave com sistema ZVC chega a ser 140% mais cara do que uma chave comum.

Conforme descrito anteriormente e apresentado na tabela II, os valores de DHTv do sistema analisado, considerando apenas a inclusão dos bancos BC-01, BC-02, BC-03 e BC-04, situam-se acima do limite recomendado pela Norma IEEE Std. 519 [3]. Com a adoção da alternativa 1, que, como vimos, consiste na inclusão de reatores e resistores em série com os bancos de capacitores, obtém-se, além da redução desses níveis para valores inferiores a 5%, também a mitigação dos transitórios eletromagnéticos para valores operacionalmente aceitáveis. Dessa forma, adotou-se esta solução, por ser a que apresenta a melhor relação custo-benefício para o sistema elétrico analisado.

Conclusões

Mediante os resultados das 12 simulações realizadas, observa-se a importância dos estudos de análise de alternativas para mitigar as solicitações transitórias de tensão e corrente ao sistema elétrico, devidas a manobras em bancos de capacitores.

A forma (monopolar ou tripolar) e o instante de fechamento das chaves a vácuo influi diretamente nos valores das sobretensões e sobrecorrentes transitórias geradas no sistema. Os resultados obtidos com a utilização do sistema de monitoramento ZVC (simulações 5, 6, 7 e 8) apresentaram valores inferiores aos das simulações com fechamento tripolar (simulações 1, 2, 3 e 4). Entretanto, devido ao seu elevado custo, a chave com sistema ZVC deve ser adotada apenas quando não for necessária a redução dos níveis de DHTv, ou quando apenas a adoção dos filtros harmônicos (alternativa 1) não reduzir significativamente os valores das sobretensões e sobrecorrentes transitórias.

De maneira geral, utilizam-se chaves a vácuo para manobras de bancos de capacitores de até 36 kV. Há uma nova tecnologia em manobra de correntes capacitivas, conhecida como chave livre de transientes. Basicamente, é uma chave a vácuo com diodos em paralelo em cada polo. No momento em que a tensão passa por zero e está na mesma polaridade dos diodos, a chave passa a conduzir e, logo em seguida, o polo principal se fecha. Resultado: manobra do banco sem produção de transientes. Atualmente, essas chaves estão disponíveis apenas para instalação em ambiente interno e para tensões de 15 kV, mas existem trabalhos em desenvolvimento para aplicação dessa tecnologia em ambiente externo em até 36 kV.

Para tensões superiores a 36 kV (145 kV, 245 kV, 500 kV...), utilizam-se, na prática, disjuntores de uso externo sem e com sincronismo (dispositivo com função similar ao controle ZVC), para o chaveamento de bancos de capacitores e/ou filtros harmônicos.

Neste artigo, comprovou-se que a implementação dos filtros harmônicos (alternativa 1) minimizou consideravelmente os valores das sobretensões, para 105% de Vn, e das sobrecorrentes transitórias na configuração *back-to-back*, para 4,47 x In, além de reduzir os níveis de DHTv de 12,2% para 1,3%, valor inferior ao limite de 5% recomendado pela normalização.

Para o sistema elétrico analisado, portanto, a opção mais indicada é a correção de reativos através da inclusão dos filtros harmônicos dessintonizados de 3,8ª ordem harmônica.

Referências

- IEEE Std. 1159-2009. IEEE Recommended Practice for Monitoring Electric Power Quality. 2009.
- [2] IEC 60909-2001; Short-circuit Currents In Tree-Phase A.C. Systems. 2001.
- [3] IEEE Std. 519-2014. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. 2014
- [4] Garcia, F. R.; Silva, A. M.; Almeida, P. R.; Lemes, M. I., Aplicação de Equipamentos de Compensação Reativa em Sistemas Industriais sob os Aspectos de Harmônicos e Transitórios de Manobra: Estudo de Casos Reais. Revisão E, CBQEEE, 2015.
- [5] ABNT NBR 5282 (1998): Capacitores de Potência em Derivação para Sistemas de Tensão Nominal acima de 1000V – Especificação. 1998.
- [6] ANSI C37.012-1979 Application Guide for Capacitance Current Switching for AC High-Voltage Circuit Breakers Rated on a Summetrical Current Basis. 1979.
- [7] Araújo, A. E.; Neves, W. L. A.: Cálculo de Transitórios Eletromagnéticos em Sistema de Energia. 1ª ed., BH: Ed. UFMG, 2005, 260p.
- [8] Zanetta Júnior, L. C.: Fundamentos de Sistemas Elétricos de Potência. 1^a ed., SP: Ed. Livraria da Física, 2006, 312p.
- [9] Zanetta Júnior, L. C.: Transitórios Eletromagnéticos em Sistemas de Potência. Vol. 52, SP: Ed. Edusp – Editora da Universidade de São Paulo, 2003, 712p.
- [10] Moura, D. F. P.; Dantas, K. M. C.; Neves W. L. A.; Fernandes Júnior, D.: Estudo de Surtos Decorrentes de Manobras em Bancos de Capacitores – Procedimentos Computacionais e Medidas Mitigadoras. 96708, SBSE 2012.

